Files
build_notes_simengweb/assets/index.html-D1LlR1M2.js

4 lines
25 KiB
JavaScript
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import{_ as e,c as l,d as a,b as p,a as t,e as m,r as i,o as r}from"./app-D5W2ova4.js";const c={};function o(h,s){const n=i("Mermaid");return r(),l("div",null,[s[0]||(s[0]=a("p",null,[m("置换密码的核心思想不是“把字母换成别的字母”(替换),而是"),a("strong",null,"重新排列明文字符的位置"),m("。也就是说:")],-1)),s[1]||(s[1]=a("ul",null,[a("li",null,"明文字母的集合不变,顺序发生了改变;"),a("li",null,"由于字母频率不变,置换密码依然会暴露统计特征,但单词的结构与位置模式被打散。")],-1)),s[2]||(s[2]=a("p",null,"与“替换密码”相比,置换密码更像是“洗牌”:把原本顺序排列的牌重新打乱。单独使用时并不安全,但与替换联合使用(乘积密码)能显著增强安全性。",-1)),p(n,{code:"eJxLy8kvT85ILCpR8AniUlAIiH42o+/ZtPZYBV1dOwXH6mcLdj7rXfd0fdvLSUufT5n/rGPCk729z/euqwWqdQSrcYp+2d77bNqGZ32TnnZMf7p2+vM1y2KBsk5gWedooF6QeVwAXu4ypQ=="}),s[3]||(s[3]=t(`<h2 id="一、栅栏密码-rail-fence-cipher" tabindex="-1"><a class="header-anchor" href="#一、栅栏密码-rail-fence-cipher"><span>一、栅栏密码Rail Fence Cipher</span></a></h2><p><strong>工作原理</strong> 将明文按“Z字形”写入若干行称为“栅栏/轨道”),再按行依次读出即得到密文。轨道数即为密钥。</p><p><strong>示意</strong>(以 3 轨为例):</p><div class="language- line-numbers-mode" data-highlighter="shiki" data-ext="" style="--shiki-light:#393a34;--shiki-dark:#dbd7caee;--shiki-light-bg:#ffffff;--shiki-dark-bg:#121212;"><pre class="shiki shiki-themes vitesse-light vitesse-dark vp-code"><code class="language-"><span class="line"><span>轨1: 0 4 8 ...</span></span>
<span class="line"><span>轨2: 1 3 5 7 9 ...</span></span>
<span class="line"><span>轨3: 2 6 ...</span></span></code></pre><div class="line-numbers" aria-hidden="true" style="counter-reset:line-number 0;"><div class="line-number"></div><div class="line-number"></div><div class="line-number"></div></div></div><p><strong>示例</strong> 明文:<code>HELLOWORLD</code> 轨道数:<code>3</code></p><ul><li>轨1索引 0,4,8<code>H O L</code></li><li>轨2索引 1,3,5,7,9<code>E L W R D</code></li><li>轨3索引 2,6<code>L O</code></li></ul><p>密文为各轨串联:<code>HOL</code> + <code>ELWRD</code> + <code>LO</code> → <code>HOLELWRDLO</code></p><p><strong>数学表示</strong> 设明文 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo>=</mo><msub><mi>p</mi><mn>0</mn></msub><msub><mi>p</mi><mn>1</mn></msub><mo>…</mo><msub><mi>p</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">P = p_0 p_1 \\dots p_{n-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight"></span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span>,根据密钥生成一个位置序列 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>s</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>s</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">s_0, s_1, \\dots, s_{n-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight"></span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span>(即置换次序),则:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>C</mi><mi>j</mi></msub><mo>=</mo><msub><mi>p</mi><msub><mi>s</mi><mi>j</mi></msub></msub><mo separator="true">,</mo><mspace width="1em"></mspace><mi>j</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">C_j = p_{s_j}, \\quad j = 0,1,\\dots,n-1 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0068em;vertical-align:-0.3473em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3473em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span></p><p>解密使用逆序列 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>=</mo><msup><mi>s</mi><mrow><mo></mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">t = s^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>p</mi><mi>i</mi></msub><mo>=</mo><msub><mi>C</mi><msub><mi>t</mi><mi>i</mi></msub></msub><mo separator="true">,</mo><mspace width="1em"></mspace><mi>i</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">p_i = C_{t_i}, \\quad i = 0,1,\\dots,n-1 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9334em;vertical-align:-0.2501em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2806em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2501em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span></p><p><strong>特点</strong></p><ul><li>实现简单,直观“打乱顺序”</li><li>频率不变,难以抵抗纯统计分析;但位置模式被破坏,较难直接猜词</li><li>作为教学与与替换密码的组合(乘积密码)更有价值</li></ul><h2 id="二、列移位置换-columnar-transposition" tabindex="-1"><a class="header-anchor" href="#二、列移位置换-columnar-transposition"><span>二、列移位置换Columnar Transposition</span></a></h2><p><strong>工作原理</strong> 选择一个关键词,将明文按列填入表格,再按关键词的字母排序对列进行重排,最终按列或按行读出密文。</p>`,15)),p(n,{code:"eJxLy8kvT85ILCpR8AniUlBwjH42o+/ZtPanC1c/bV36YuGKZwv2xCro6topOFU/6+l82rr55ZR1L9b3Puub9HRX/9OO6bVATU5gBc7RL9tB4i/W737aPy0WKO4MFneJfrq+DWhkLBcAZzk0hQ=="}),s[4]||(s[4]=t('<p><strong>简例(概念演示)</strong> 明文:<code>ATTACKATDAWN</code> 关键词:<code>ZEBRA</code>(按字母表排序为 <code>A B E R Z</code></p><ol><li>将明文逐行填入 5 列表格;</li><li>按关键词排序A→B→E→R→Z重排列</li><li>按重排后的列依次读出密文。</li></ol><p>(实际实现时需要处理明文长度不足一整行的填充策略,如使用 <code>X</code> 或留空。)</p><p><strong>数学表示(一般置换模型)</strong> 关键词决定一个列置换 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span>,其作用是重新排列列索引。若把明文按列读取为序列 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>,加密可抽象为:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>C</mi><mo>=</mo><msub><mrow><mi mathvariant="normal">Permute</mi><mo></mo></mrow><mi>π</mi></msub><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"></mspace><mi>P</mi><mo>=</mo><msub><mrow><mi mathvariant="normal">Permute</mi><mo></mo></mrow><msup><mi>π</mi><mrow><mo></mo><mn>1</mn></mrow></msup></msub><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C = \\operatorname{Permute}_{\\pi}(P), \\quad P = \\operatorname{Permute}_{\\pi^{-1}}(C) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Permute</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Permute</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5224em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1776em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mclose">)</span></span></span></span></span></p><p><strong>特点</strong></p><ul><li>比栅栏更灵活,关键词让置换更“难猜”</li><li>仍保留频率分布,易受已知明文/选择明文的结构分析攻击</li><li>常与替换结合形成更强的乘积密码(如 ADFGX/ADFGVX 密码)</li></ul><h2 id="三、联合与加固-置换-×-替换" tabindex="-1"><a class="header-anchor" href="#三、联合与加固-置换-×-替换"><span>三、联合与加固:置换 × 替换</span></a></h2><p>将“替换”与“置换”组合(先替换后置换,或多轮交替)能显著增强安全性:</p><ul><li>替换打乱统计特征(字母频率分布变平)</li><li>置换打乱位置结构(模式与相邻关系被破坏)</li></ul><p>这种思路在现代密码设计中仍然常见(“混淆与扩散”理念),尽管算法形式已经大为不同。</p><h2 id="四、安全性与弱点-直观理解" tabindex="-1"><a class="header-anchor" href="#四、安全性与弱点-直观理解"><span>四、安全性与弱点(直观理解)</span></a></h2><ul><li>单独的置换密码不改变字母频率,抵抗统计攻击能力有限</li><li>容易受到已知明文/选择明文攻击(通过结构猜测置换)</li><li>多轮、复杂置换能提高攻击成本,但不建议单独用于实际安全场景</li></ul><h2 id="五、小练习-可选" tabindex="-1"><a class="header-anchor" href="#五、小练习-可选"><span>五、小练习(可选)</span></a></h2><p>试着把你自己的名字用 3 轨栅栏加密;然后写出解密过程(先确定轨道索引,再按逆序重建原文)。</p><h2 id="附件" tabindex="-1"><a class="header-anchor" href="#附件"><span>附件:</span></a></h2><p>具体的使用样例代码请参考:<a href="https://gitea.simengweb.com/si-meng-spec/cryptography-example-code" target="_blank" rel="noopener noreferrer">https://gitea.simengweb.com/si-meng-spec/cryptography-example-code</a></p>',17))])}const d=e(c,[["render",o]]),u=JSON.parse('{"path":"/theory/cryptography/permutation-encryption/","title":"置换密码 - 等待完善","lang":"zh-CN","frontmatter":{"title":"置换密码 - 等待完善","createTime":"2025/10/29 13:50:49","permalink":"/theory/cryptography/permutation-encryption/"},"readingTime":{"minutes":3.41,"words":1022},"git":{"createdTime":1761747132000,"updatedTime":1761747132000,"contributors":[{"name":"祀梦","username":"","email":"3501646051@qq.com","commits":1,"avatar":"https://gravatar.com/avatar/6406a81eeddc359cf3d3ce018797689fc6d014ff06215c27d0210b42e8f5a8ab?d=retro"}]},"filePathRelative":"notes/theory/cryptography/classical-encryption/permutation-encryption.md","headers":[]}');export{d as comp,u as data};