Files
build_notes_simengweb/theory/cryptography/substitution-ciphers/index.html
2025-11-11 21:38:22 +08:00

3 lines
80 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html><html lang="zh-CN"><head><meta charset="utf-8" /><meta name="viewport" content="width=device-width,initial-scale=1" /><meta name="generator" content="VuePress 2.0.0-rc.24" /><meta name="theme" content="VuePress Theme Plume 1.0.0-rc.164" /><script id="check-mac-os">document.documentElement.classList.toggle('mac', /Mac|iPhone|iPod|iPad/i.test(navigator.platform))</script><script id="check-dark-mode">;(function () {const um= localStorage.getItem('vuepress-theme-appearance') || 'auto';const sm = window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches;const isDark = um === 'dark' || (um !== 'light' && sm);document.documentElement.dataset.theme = isDark ? 'dark' : 'light';})();</script><link rel="icon" type="image/png" href="https://theme-plume.vuejs.press/favicon-32x32.png"><title>替换密码 | 仲夏夜之梦</title><meta name="description" content="爱与回忆的小世界,记录生活中的每一份温暖与感动"><link rel="preload" href="/assets/style-PWY98LJg.css" as="style"><link rel="stylesheet" href="/assets/style-PWY98LJg.css"><link rel="modulepreload" href="/assets/app-I9WJttm3.js"><link rel="modulepreload" href="/assets/index.html-Cv1IgX6k.js"></head><body><div id="app"><!--[--><!--[--><div class="theme-plume vp-layout" vp-container data-v-f73ca3da><!--[--><!--[--><!--]--><!--[--><span tabindex="-1" data-v-17e3d305></span><a href="#VPContent" class="vp-skip-link visually-hidden" data-v-17e3d305> Skip to content </a><!--]--><!----><header class="vp-nav" data-v-f73ca3da data-v-e98a6132><div class="vp-navbar" vp-navbar data-v-e98a6132 data-v-2c31ea5e><div class="wrapper" data-v-2c31ea5e><div class="container" data-v-2c31ea5e><div class="title" data-v-2c31ea5e><div class="vp-navbar-title has-sidebar" data-v-2c31ea5e data-v-1a4f50af><a class="vp-link link no-icon title" href="/" data-v-1a4f50af><!--[--><!--[--><!--]--><!--[--><!--[--><!--[--><img class="vp-image dark logo" style="" src="/plume.svg" alt data-v-480e858a><!--]--><!--[--><img class="vp-image light logo" style="" src="/plume.svg" alt data-v-480e858a><!--]--><!--]--><!--]--><span data-v-1a4f50af>仲夏夜之梦</span><!--[--><!--]--><!--]--><!----></a></div></div><div class="content" data-v-2c31ea5e><div class="content-body" data-v-2c31ea5e><!--[--><!--]--><div class="vp-navbar-search search" data-v-2c31ea5e><div class="search-wrapper" data-v-97535d1e><!----><div id="local-search" data-v-97535d1e><button type="button" class="mini-search mini-search-button" aria-label="搜索文档" data-v-97535d1e><span class="mini-search-button-container"><span class="mini-search-search-icon vpi-mini-search" aria-label="search icon"></span><span class="mini-search-button-placeholder">搜索文档</span></span><span class="mini-search-button-keys"><kbd class="mini-search-button-key"></kbd><kbd class="mini-search-button-key">K</kbd></span></button></div></div></div><!--[--><!--]--><nav aria-labelledby="main-nav-aria-label" class="vp-navbar-menu menu" data-v-2c31ea5e data-v-d43c1732><span id="main-nav-aria-label" class="visually-hidden" data-v-d43c1732>Main Navigation</span><!--[--><!--[--><a class="vp-link link navbar-menu-link" href="/" tabindex="0" data-v-d43c1732 data-v-d4acf911><!--[--><!----><span data-v-d4acf911>首页</span><!----><!--]--><!----></a><!--]--><!--[--><a class="vp-link link navbar-menu-link" href="/blog/" tabindex="0" data-v-d43c1732 data-v-d4acf911><!--[--><!----><span data-v-d4acf911>博客</span><!----><!--]--><!----></a><!--]--><!--[--><div class="vp-flyout vp-navbar-menu-group" data-v-d43c1732 data-v-86530b6c><button type="button" class="button" aria-haspopup="true" aria-expanded="false" data-v-86530b6c><span class="text" data-v-86530b6c><!----><!----><span data-v-86530b6c>学科知识</span><!----><span class="vpi-chevron-down text-icon" data-v-86530b6c></span></span></button><div class="menu" data-v-86530b6c><div class="vp-menu" data-v-86530b6c data-v-709dc2b1><div class="items" data-v-709dc2b1><!--[--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/subject/english/" data-v-1ff1855f><!--[--><!----> 英语学习笔记 <!----><!--]--><!----></a></div><!--]--><!--]--></div><!--[--><!--]--></div></div></div><!--]--><!--[--><div class="vp-flyout vp-navbar-menu-group" data-v-d43c1732 data-v-86530b6c><button type="button" class="button" aria-haspopup="true" aria-expanded="false" data-v-86530b6c><span class="text" data-v-86530b6c><!----><!----><span data-v-86530b6c>编程笔记</span><!----><span class="vpi-chevron-down text-icon" data-v-86530b6c></span></span></button><div class="menu" data-v-86530b6c><div class="vp-menu" data-v-86530b6c data-v-709dc2b1><div class="items" data-v-709dc2b1><!--[--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/programming/leetcode/" data-v-1ff1855f><!--[--><!----> LeetCode <!----><!--]--><!----></a></div><!--]--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/programming/cplusplus/" data-v-1ff1855f><!--[--><!----> C++ <!----><!--]--><!----></a></div><!--]--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/programming/solidity/" data-v-1ff1855f><!--[--><!----> Solidity <!----><!--]--><!----></a></div><!--]--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/programming/web/" data-v-1ff1855f><!--[--><!----> Web 开发 <!----><!--]--><!----></a></div><!--]--><!--]--></div><!--[--><!--]--></div></div></div><!--]--><!--[--><div class="vp-flyout vp-navbar-menu-group" data-v-d43c1732 data-v-86530b6c><button type="button" class="button" aria-haspopup="true" aria-expanded="false" data-v-86530b6c><span class="text" data-v-86530b6c><!----><!----><span data-v-86530b6c>技术理论</span><!----><span class="vpi-chevron-down text-icon" data-v-86530b6c></span></span></button><div class="menu" data-v-86530b6c><div class="vp-menu" data-v-86530b6c data-v-709dc2b1><div class="items" data-v-709dc2b1><!--[--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/theory/cryptography/" data-v-1ff1855f><!--[--><!----> 密码学基础 <!----><!--]--><!----></a></div><!--]--><!--]--></div><!--[--><!--]--></div></div></div><!--]--><!--[--><div class="vp-flyout vp-navbar-menu-group" data-v-d43c1732 data-v-86530b6c><button type="button" class="button" aria-haspopup="true" aria-expanded="false" data-v-86530b6c><span class="text" data-v-86530b6c><!----><!----><span data-v-86530b6c>运维</span><!----><span class="vpi-chevron-down text-icon" data-v-86530b6c></span></span></button><div class="menu" data-v-86530b6c><div class="vp-menu" data-v-86530b6c data-v-709dc2b1><div class="items" data-v-709dc2b1><!--[--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/ops/blockchain/" data-v-1ff1855f><!--[--><!----> 区块链运维 <!----><!--]--><!----></a></div><!--]--><!--[--><div class="vp-menu-link" data-v-709dc2b1 data-v-1ff1855f><a class="vp-link link" href="/ops/linux/" data-v-1ff1855f><!--[--><!----> Linux 运维 <!----><!--]--><!----></a></div><!--]--><!--]--></div><!--[--><!--]--></div></div></div><!--]--><!--[--><a class="vp-link link navbar-menu-link" href="/tools/" tabindex="0" data-v-d43c1732 data-v-d4acf911><!--[--><!----><span data-v-d4acf911>工具</span><!----><!--]--><!----></a><!--]--><!--[--><a class="vp-link link navbar-menu-link" href="/about/" tabindex="0" data-v-d43c1732 data-v-d4acf911><!--[--><!----><span data-v-d4acf911>关于</span><!----><!--]--><!----></a><!--]--><!--[--><a class="vp-link link navbar-menu-link" href="/friends/" tabindex="0" data-v-d43c1732 data-v-d4acf911><!--[--><!----><span data-v-d4acf911>友情链接</span><!----><!--]--><!----></a><!--]--><!--]--></nav><!--[--><!--]--><!----><div class="vp-navbar-appearance appearance" data-v-2c31ea5e data-v-a295abf6><button class="vp-switch vp-switch-appearance" type="button" role="switch" title aria-checked="false" data-v-a295abf6 data-v-596c25a9 data-v-7eb32327><span class="check" data-v-7eb32327><span class="icon" data-v-7eb32327><!--[--><span class="vpi-sun sun" data-v-596c25a9></span><span class="vpi-moon moon" data-v-596c25a9></span><!--]--></span></span></button></div><div class="vp-social-links vp-navbar-social-links social-links" data-v-2c31ea5e data-v-ad52545c data-v-40bac536><!--[--><a class="vp-social-link no-icon" href="/" aria-label="github" target="_blank" rel="noopener" data-v-40bac536 data-v-67b21932><span class="vpi-social-github" /></a><!--]--></div><div class="vp-flyout vp-navbar-extra extra" data-v-2c31ea5e data-v-652282fd data-v-86530b6c><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-86530b6c><span class="vpi-more-horizontal icon" data-v-86530b6c></span></button><div class="menu" data-v-86530b6c><div class="vp-menu" data-v-86530b6c data-v-709dc2b1><!----><!--[--><!--[--><!----><div class="group" data-v-652282fd><div class="item appearance" data-v-652282fd><p class="label" data-v-652282fd>外观</p><div class="appearance-action" data-v-652282fd><button class="vp-switch vp-switch-appearance" type="button" role="switch" title aria-checked="false" data-v-652282fd data-v-596c25a9 data-v-7eb32327><span class="check" data-v-7eb32327><span class="icon" data-v-7eb32327><!--[--><span class="vpi-sun sun" data-v-596c25a9></span><span class="vpi-moon moon" data-v-596c25a9></span><!--]--></span></span></button></div></div></div><div class="group" data-v-652282fd><div class="item social-links" data-v-652282fd><div class="vp-social-links social-links-list" data-v-652282fd data-v-40bac536><!--[--><a class="vp-social-link no-icon" href="/" aria-label="github" target="_blank" rel="noopener" data-v-40bac536 data-v-67b21932><span class="vpi-social-github" /></a><!--]--></div></div></div><!--]--><!--]--></div></div></div><!--[--><!--]--><button type="button" class="vp-navbar-hamburger hamburger" aria-label="mobile navigation" aria-expanded="false" aria-controls="nav-screen" data-v-2c31ea5e data-v-2b50024d><span class="container" data-v-2b50024d><span class="top" data-v-2b50024d></span><span class="middle" data-v-2b50024d></span><span class="bottom" data-v-2b50024d></span></span></button></div></div></div></div><div class="divider" data-v-2c31ea5e><div class="divider-line" data-v-2c31ea5e></div></div></div><!----></header><div class="vp-local-nav reached-top" data-v-f73ca3da data-v-3944d8e8><button class="menu" aria-expanded="false" aria-controls="SidebarNav" data-v-3944d8e8><span class="vpi-align-left menu-icon" data-v-3944d8e8></span><span class="menu-text" data-v-3944d8e8>Menu</span></button><div class="vp-local-nav-outline-dropdown" style="--vp-vh:0px;" data-v-3944d8e8 data-v-4114a62c><button data-v-4114a62c>返回顶部</button><!----></div></div><aside class="vp-sidebar" vp-sidebar data-v-f73ca3da data-v-95211354><div class="curtain" data-v-95211354></div><nav id="SidebarNav" class="nav" aria-labelledby="sidebar-aria-label" tabindex="-1" data-v-95211354><span id="sidebar-aria-label" class="visually-hidden" data-v-95211354> Sidebar Navigation </span><!--[--><!--]--><!--[--><div class="no-transition group" data-v-473fd05b><section class="vp-sidebar-item sidebar-item level-0" data-v-473fd05b data-v-12048f0f><!----><div data-v-12048f0f data-v-12048f0f><div class="items" data-v-12048f0f><!--[--><div class="vp-sidebar-item sidebar-item level-1 is-link" data-v-12048f0f data-v-12048f0f><div class="item" data-v-12048f0f><div class="indicator" data-v-12048f0f></div><!----><a class="vp-link link link" href="/theory/cryptography/" data-v-12048f0f><!--[--><p class="text" data-v-12048f0f><span data-v-12048f0f>密码学基础</span><!----></p><!--]--><!----></a><!----></div><!----></div><!--]--></div></div></section></div><div class="no-transition group" data-v-473fd05b><section class="vp-sidebar-item sidebar-item level-0 has-active" data-v-473fd05b data-v-12048f0f><div class="item" role="button" tabindex="0" data-v-12048f0f><div class="indicator" data-v-12048f0f></div><!----><h2 class="text" data-v-12048f0f><span data-v-12048f0f>古典加密算法</span><!----></h2><!----></div><div data-v-12048f0f data-v-12048f0f><div class="items" data-v-12048f0f><!--[--><div class="vp-sidebar-item sidebar-item level-1 is-link" data-v-12048f0f data-v-12048f0f><div class="item" data-v-12048f0f><div class="indicator" data-v-12048f0f></div><!----><a class="vp-link link link" href="/theory/cryptography/substitution-ciphers/" data-v-12048f0f><!--[--><p class="text" data-v-12048f0f><span data-v-12048f0f>替换密码</span><!----></p><!--]--><!----></a><!----></div><!----></div><div class="vp-sidebar-item sidebar-item level-1 is-link" data-v-12048f0f data-v-12048f0f><div class="item" data-v-12048f0f><div class="indicator" data-v-12048f0f></div><!----><a class="vp-link link link" href="/theory/cryptography/permutation-encryption/" data-v-12048f0f><!--[--><p class="text" data-v-12048f0f><span data-v-12048f0f>置换密码</span><!----></p><!--]--><!----></a><!----></div><!----></div><!--]--></div></div></section></div><!--]--><!--[--><!--]--></nav></aside><!--[--><div id="VPContent" vp-content class="vp-content has-sidebar" data-v-f73ca3da data-v-b2beaca7><div class="vp-doc-container has-sidebar has-aside" data-v-b2beaca7 data-v-23f6ad98><!--[--><!--]--><div class="container" data-v-23f6ad98><div class="aside" vp-outline data-v-23f6ad98><div class="aside-curtain" data-v-23f6ad98></div><div class="aside-container" data-v-23f6ad98><div class="aside-content" data-v-23f6ad98><div class="vp-doc-aside" data-v-23f6ad98 data-v-5976474c><!--[--><!--]--><!--[--><!--]--><nav aria-labelledby="doc-outline-aria-label" class="vp-doc-aside-outline" role="navigation" data-v-5976474c data-v-aa56eba0><div class="content" data-v-aa56eba0><div class="outline-marker" data-v-aa56eba0></div><div id="doc-outline-aria-label" aria-level="2" class="outline-title" role="heading" data-v-aa56eba0><span data-v-aa56eba0>此页内容</span><span class="vpi-print icon" data-v-aa56eba0></span></div><ul class="root" data-v-aa56eba0 data-v-3e6b023c><!--[--><!--]--></ul></div></nav><!--[--><!--]--><div class="spacer" data-v-5976474c></div><!--[--><!--]--></div></div></div></div><div class="content" data-v-23f6ad98><div class="content-container" data-v-23f6ad98><!--[--><!--]--><main class="main" data-v-23f6ad98><nav class="vp-breadcrumb" data-v-23f6ad98 data-v-1ae4ad7a><ol vocab="https://schema.org/" typeof="BreadcrumbList" data-v-1ae4ad7a><!--[--><li property="itemListElement" typeof="ListItem" data-v-1ae4ad7a><a class="vp-link link breadcrumb" href="/" property="item" typeof="WebPage" data-v-1ae4ad7a><!--[-->首页<!--]--><!----></a><span class="vpi-chevron-right" data-v-1ae4ad7a></span><meta property="name" content="首页" data-v-1ae4ad7a><meta property="position" content="1" data-v-1ae4ad7a></li><li property="itemListElement" typeof="ListItem" data-v-1ae4ad7a><span class="vp-link breadcrumb" property="item" typeof="WebPage" data-v-1ae4ad7a><!--[-->古典加密算法<!--]--><!----></span><span class="vpi-chevron-right" data-v-1ae4ad7a></span><meta property="name" content="古典加密算法" data-v-1ae4ad7a><meta property="position" content="2" data-v-1ae4ad7a></li><li property="itemListElement" typeof="ListItem" data-v-1ae4ad7a><a class="vp-link link breadcrumb current" href="/theory/cryptography/substitution-ciphers/" property="item" typeof="WebPage" data-v-1ae4ad7a><!--[-->替换密码<!--]--><!----></a><!----><meta property="name" content="替换密码" data-v-1ae4ad7a><meta property="position" content="3" data-v-1ae4ad7a></li><!--]--></ol></nav><!--[--><!--]--><!--[--><h1 class="vp-doc-title page-title" data-v-ba8d1a1e><!----> 替换密码 <!----></h1><div class="vp-doc-meta" data-v-ba8d1a1e><!--[--><!--]--><p class="reading-time" data-v-ba8d1a1e><span class="vpi-books icon" data-v-ba8d1a1e></span><span data-v-ba8d1a1e>约 1648 字</span><span data-v-ba8d1a1e>大约 5 分钟</span></p><!----><!--[--><!--]--><p class="create-time" data-v-ba8d1a1e><span class="vpi-clock icon" data-v-ba8d1a1e></span><span data-v-ba8d1a1e>2025-10-27</span></p></div><!--]--><!--[--><!--]--><div class="_theory_cryptography_substitution-ciphers_ external-link-icon-enabled vp-doc plume-content" vp-content data-v-23f6ad98><!--[--><!--]--><div data-v-23f6ad98><p>我们一起来系统梳理古典加密算法Classical Ciphers。这些算法虽然在现代已不再安全但它们是密码学发展的基石蕴含了替换、置换、密钥等核心思想非常适合理解密码学的基本原理。</p><p>替换密码的核心思想是“一对一”或“多对一”的字符映射:把明文中的每一个字母(或符号)按照事先约定好的规则,替换成另一个字母(或符号)。</p><p>这种映射可以是固定不变的(如凯撒密码的“统一移位”),也可以是依赖密钥动态变化的(如维吉尼亚密码的“周期移位”)。</p><p>由于密文保留了原始字母的出现频率,只是“换了一张皮”,所以替换密码在本质上没有改变字母的统计特性,这也为频率分析攻击留下了突破口。</p><p>替换操作可以手工完成,也可以通过查表、转盘、甚至机械电路实现,是后续更复杂多表替换与乘积密码的雏形。</p><h2 id="一、凯撒密码-caesar-cipher" tabindex="-1"><a class="header-anchor" href="#一、凯撒密码-caesar-cipher"><span>一、凯撒密码Caesar Cipher</span></a></h2><p><strong>工作原理</strong> 凯撒密码是一种循环移位密码,将字母表视为一个环形结构。加密时每个字母向后移动固定位置 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span>,解密时向前移动相同位置。</p><p><strong>数学表示</strong> 设字母 A-Z 对应数字 0-25</p><p>加密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>k</mi><mo stretchy="false">)</mo><mspace></mspace><mspace width="1em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn></mrow><annotation encoding="application/x-tex">E(x) = (x + k) \mod 26 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span></span></span></span></span></p><p>解密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo></mo><mi>k</mi><mo stretchy="false">)</mo><mspace></mspace><mspace width="1em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn></mrow><annotation encoding="application/x-tex">D(x) = (x - k) \mod 26 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span></span></span></span></span></p><p>其中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> 是明文字母编号,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 是密钥0 ≤ k ≤ 25</p><p><strong>特点</strong></p><ul><li>实现简单,易于理解</li><li>密钥空间仅 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>26</mn></mrow><annotation encoding="application/x-tex">26</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">26</span></span></span></span> 种可能,安全性极低</li><li>易受频率分析攻击</li><li>主要具有教学价值</li></ul><h2 id="二、单表替换密码-simple-substitution-cipher" tabindex="-1"><a class="header-anchor" href="#二、单表替换密码-simple-substitution-cipher"><span>二、单表替换密码Simple Substitution Cipher</span></a></h2><p><strong>工作原理</strong> 单表替换密码是凯撒密码的泛化形式,它使用一个随机的字母替换表,而不是固定的移位。每个明文字母都被唯一地映射到一个密文字母,形成一对一的替换关系。</p><!--[--><div class="mermaid-actions"><button class="preview-button" title="preview"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1316 1024" fill="currentColor"><path d="M658.286 0C415.89 0 0 297.106 0 512c0 214.82 415.89 512 658.286 512 242.322 0 658.285-294.839 658.285-512S900.608 0 658.286 0zm0 877.714c-161.573 0-512-221.769-512-365.714 0-144.018 350.427-365.714 512-365.714 161.572 0 512 217.16 512 365.714s-350.428 365.714-512 365.714z"/><path d="M658.286 292.571a219.429 219.429 0 1 0 0 438.858 219.429 219.429 0 0 0 0-438.858zm0 292.572a73.143 73.143 0 1 1 0-146.286 73.143 73.143 0 0 1 0 146.286z"/></svg></button><button class="download-button" title="download"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1024 1024" fill="currentColor"><path d="M828.976 894.125H190.189c-70.55 0-127.754-57.185-127.754-127.753V606.674c0-17.634 14.31-31.933 31.933-31.933h63.889c17.634 0 31.932 14.299 31.932 31.933v95.822c0 35.282 28.596 63.877 63.877 63.877h511.033c35.281 0 63.877-28.595 63.877-63.877v-95.822c0-17.634 14.298-31.933 31.943-31.933h63.878c17.635 0 31.933 14.299 31.933 31.933v159.7c0 70.566-57.191 127.751-127.754 127.751zM249.939 267.51c12.921-12.92 33.885-12.92 46.807 0l148.97 148.972V94.893c0-17.634 14.302-31.947 31.934-31.947h63.876c17.638 0 31.946 14.313 31.946 31.947v321.589l148.97-148.972c12.922-12.92 33.876-12.92 46.797 0l46.814 46.818c12.922 12.922 12.922 33.874 0 46.807L552.261 624.93c-1.14 1.138-21.664 13.684-42.315 13.693-20.877.01-41.88-12.542-43.021-13.693L203.122 361.135c-12.923-12.934-12.923-33.885 0-46.807l46.817-46.818z"/></svg></button></div><div class="mermaid-wrapper"><div style="display:flex;align-items:center;justify-content:center;height:96px;" class="mermaid-loading"><span style="--loading-icon: url(&quot;data:image/svg+xml;utf8,%3Csvg xmlns=&#39;http://www.w3.org/2000/svg&#39; preserveAspectRatio=&#39;xMidYMid&#39; viewBox=&#39;25 25 50 50&#39;%3E%3CanimateTransform attributeName=&#39;transform&#39; type=&#39;rotate&#39; dur=&#39;2s&#39; keyTimes=&#39;0;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;360&#39;%3E%3C/animateTransform%3E%3Ccircle cx=&#39;50&#39; cy=&#39;50&#39; r=&#39;20&#39; fill=&#39;none&#39; stroke=&#39;currentColor&#39; stroke-width=&#39;4&#39; stroke-linecap=&#39;round&#39;%3E%3Canimate attributeName=&#39;stroke-dasharray&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;1,200;90,200;1,200&#39;%3E%3C/animate%3E%3Canimate attributeName=&#39;stroke-dashoffset&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;-35px;-125px&#39;%3E%3C/animate%3E%3C/circle%3E%3C/svg%3E&quot;);--icon-size: 48px;display: inline-block;width: var(--icon-size);height: var(--icon-size);background-color: currentcolor;-webkit-mask-image: var(--loading-icon);mask-image: var(--loading-icon)"></span></div></div><!--]--><p><strong>数学表示</strong> 设字母表 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Σ</mi><mo>=</mo><mo stretchy="false">{</mo><mi>A</mi><mo separator="true">,</mo><mi>B</mi><mo separator="true">,</mo><mi>C</mi><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>Z</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\Sigma = \{A,B,C,...,Z\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Σ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span><span class="mclose">}</span></span></span></span>,替换函数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>:</mo><mi mathvariant="normal">Σ</mi><mo></mo><mi mathvariant="normal">Σ</mi></mrow><annotation encoding="application/x-tex">f: \Sigma \rightarrow \Sigma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Σ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Σ</span></span></span></span> 是一个双射(一一对应),则:</p><p>加密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">E(x) = f(x) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></p><p>解密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi><mrow><mo></mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">D(y) = f^{-1}(y) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span></span></p><p>其中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>f</mi><mrow><mo></mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">f^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> 的逆函数。</p><p><strong>密钥空间</strong> 单表替换密码的密钥空间是所有可能的字母排列,大小为:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal"></mi><mi>K</mi><mi mathvariant="normal"></mi><mo>=</mo><mn>26</mn><mo stretchy="false">!</mo><mo></mo><mn>4.03</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup></mrow><annotation encoding="application/x-tex">|K| = 26! \approx 4.03 \times 10^{26} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">26</span><span class="mclose">!</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4.03</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">26</span></span></span></span></span></span></span></span></span></span></span></span></span></p><p>这个巨大的密钥空间使得暴力破解在计算上不可行。</p><p><strong>示例</strong> 假设替换表为:</p><div class="language- line-numbers-mode" data-highlighter="shiki" data-ext="" style="--shiki-light:#393a34;--shiki-dark:#dbd7caee;--shiki-light-bg:#ffffff;--shiki-dark-bg:#121212;"><pre class="shiki shiki-themes vitesse-light vitesse-dark vp-code"><code class="language-"><span class="line"><span>A→Q, B→W, C→E, D→R, E→T, F→Y, G→U, H→I, I→O, J→P,</span></span>
<span class="line"><span>K→A, L→S, M→D, N→F, O→G, P→H, Q→J, R→K, S→L, T→Z,</span></span>
<span class="line"><span>U→X, V→C, W→V, X→B, Y→N, Z→M</span></span></code></pre><div class="line-numbers" aria-hidden="true" style="counter-reset:line-number 0;"><div class="line-number"></div><div class="line-number"></div><div class="line-number"></div></div></div><!--[--><div class="mermaid-actions"><button class="preview-button" title="preview"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1316 1024" fill="currentColor"><path d="M658.286 0C415.89 0 0 297.106 0 512c0 214.82 415.89 512 658.286 512 242.322 0 658.285-294.839 658.285-512S900.608 0 658.286 0zm0 877.714c-161.573 0-512-221.769-512-365.714 0-144.018 350.427-365.714 512-365.714 161.572 0 512 217.16 512 365.714s-350.428 365.714-512 365.714z"/><path d="M658.286 292.571a219.429 219.429 0 1 0 0 438.858 219.429 219.429 0 0 0 0-438.858zm0 292.572a73.143 73.143 0 1 1 0-146.286 73.143 73.143 0 0 1 0 146.286z"/></svg></button><button class="download-button" title="download"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1024 1024" fill="currentColor"><path d="M828.976 894.125H190.189c-70.55 0-127.754-57.185-127.754-127.753V606.674c0-17.634 14.31-31.933 31.933-31.933h63.889c17.634 0 31.932 14.299 31.932 31.933v95.822c0 35.282 28.596 63.877 63.877 63.877h511.033c35.281 0 63.877-28.595 63.877-63.877v-95.822c0-17.634 14.298-31.933 31.943-31.933h63.878c17.635 0 31.933 14.299 31.933 31.933v159.7c0 70.566-57.191 127.751-127.754 127.751zM249.939 267.51c12.921-12.92 33.885-12.92 46.807 0l148.97 148.972V94.893c0-17.634 14.302-31.947 31.934-31.947h63.876c17.638 0 31.946 14.313 31.946 31.947v321.589l148.97-148.972c12.922-12.92 33.876-12.92 46.797 0l46.814 46.818c12.922 12.922 12.922 33.874 0 46.807L552.261 624.93c-1.14 1.138-21.664 13.684-42.315 13.693-20.877.01-41.88-12.542-43.021-13.693L203.122 361.135c-12.923-12.934-12.923-33.885 0-46.807l46.817-46.818z"/></svg></button></div><div class="mermaid-wrapper"><div style="display:flex;align-items:center;justify-content:center;height:96px;" class="mermaid-loading"><span style="--loading-icon: url(&quot;data:image/svg+xml;utf8,%3Csvg xmlns=&#39;http://www.w3.org/2000/svg&#39; preserveAspectRatio=&#39;xMidYMid&#39; viewBox=&#39;25 25 50 50&#39;%3E%3CanimateTransform attributeName=&#39;transform&#39; type=&#39;rotate&#39; dur=&#39;2s&#39; keyTimes=&#39;0;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;360&#39;%3E%3C/animateTransform%3E%3Ccircle cx=&#39;50&#39; cy=&#39;50&#39; r=&#39;20&#39; fill=&#39;none&#39; stroke=&#39;currentColor&#39; stroke-width=&#39;4&#39; stroke-linecap=&#39;round&#39;%3E%3Canimate attributeName=&#39;stroke-dasharray&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;1,200;90,200;1,200&#39;%3E%3C/animate%3E%3Canimate attributeName=&#39;stroke-dashoffset&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;-35px;-125px&#39;%3E%3C/animate%3E%3C/circle%3E%3C/svg%3E&quot;);--icon-size: 48px;display: inline-block;width: var(--icon-size);height: var(--icon-size);background-color: currentcolor;-webkit-mask-image: var(--loading-icon);mask-image: var(--loading-icon)"></span></div></div><!--]--><p><strong>安全性分析</strong> 虽然单表替换密码的密钥空间巨大,但它仍然易受<strong>频率分析攻击</strong>。因为:</p><ol><li><strong>字母频率保留</strong>高频字母如E、T、A在密文中仍然是高频</li><li><strong>单词模式保留</strong>:常见单词模式(如&quot;THE&quot;&quot;ING&quot;)在密文中保持相同模式</li><li><strong>双字母频率</strong>:常见字母对(如&quot;TH&quot;&quot;ER&quot;)的频率特征仍然存在</li></ol><p><strong>攻击方法</strong></p><ul><li>单字母频率分析</li><li>双字母频率分析</li><li>单词长度和模式分析</li><li>已知明文攻击</li></ul><p><strong>特点</strong></p><ul><li>密钥空间巨大(<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>26</mn><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">26!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">26</span><span class="mclose">!</span></span></span></span>),理论上难以暴力破解</li><li>仍然易受统计攻击</li><li>是密码学历史上重要的里程碑</li><li>为现代密码学提供了重要启示</li></ul><h2 id="三、维吉尼亚密码-vigenere-cipher" tabindex="-1"><a class="header-anchor" href="#三、维吉尼亚密码-vigenere-cipher"><span>三、维吉尼亚密码Vigenère Cipher</span></a></h2><p><strong>工作原理</strong> 维吉尼亚密码是一种多表替换密码,它使用一个关键词来决定每次替换的凯撒密码移位量。关键词的每个字母对应一个移位量,明文的每个字母根据关键词的循环使用进行替换。</p><!--[--><div class="mermaid-actions"><button class="preview-button" title="preview"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1316 1024" fill="currentColor"><path d="M658.286 0C415.89 0 0 297.106 0 512c0 214.82 415.89 512 658.286 512 242.322 0 658.285-294.839 658.285-512S900.608 0 658.286 0zm0 877.714c-161.573 0-512-221.769-512-365.714 0-144.018 350.427-365.714 512-365.714 161.572 0 512 217.16 512 365.714s-350.428 365.714-512 365.714z"/><path d="M658.286 292.571a219.429 219.429 0 1 0 0 438.858 219.429 219.429 0 0 0 0-438.858zm0 292.572a73.143 73.143 0 1 1 0-146.286 73.143 73.143 0 0 1 0 146.286z"/></svg></button><button class="download-button" title="download"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1024 1024" fill="currentColor"><path d="M828.976 894.125H190.189c-70.55 0-127.754-57.185-127.754-127.753V606.674c0-17.634 14.31-31.933 31.933-31.933h63.889c17.634 0 31.932 14.299 31.932 31.933v95.822c0 35.282 28.596 63.877 63.877 63.877h511.033c35.281 0 63.877-28.595 63.877-63.877v-95.822c0-17.634 14.298-31.933 31.943-31.933h63.878c17.635 0 31.933 14.299 31.933 31.933v159.7c0 70.566-57.191 127.751-127.754 127.751zM249.939 267.51c12.921-12.92 33.885-12.92 46.807 0l148.97 148.972V94.893c0-17.634 14.302-31.947 31.934-31.947h63.876c17.638 0 31.946 14.313 31.946 31.947v321.589l148.97-148.972c12.922-12.92 33.876-12.92 46.797 0l46.814 46.818c12.922 12.922 12.922 33.874 0 46.807L552.261 624.93c-1.14 1.138-21.664 13.684-42.315 13.693-20.877.01-41.88-12.542-43.021-13.693L203.122 361.135c-12.923-12.934-12.923-33.885 0-46.807l46.817-46.818z"/></svg></button></div><div class="mermaid-wrapper"><div style="display:flex;align-items:center;justify-content:center;height:96px;" class="mermaid-loading"><span style="--loading-icon: url(&quot;data:image/svg+xml;utf8,%3Csvg xmlns=&#39;http://www.w3.org/2000/svg&#39; preserveAspectRatio=&#39;xMidYMid&#39; viewBox=&#39;25 25 50 50&#39;%3E%3CanimateTransform attributeName=&#39;transform&#39; type=&#39;rotate&#39; dur=&#39;2s&#39; keyTimes=&#39;0;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;360&#39;%3E%3C/animateTransform%3E%3Ccircle cx=&#39;50&#39; cy=&#39;50&#39; r=&#39;20&#39; fill=&#39;none&#39; stroke=&#39;currentColor&#39; stroke-width=&#39;4&#39; stroke-linecap=&#39;round&#39;%3E%3Canimate attributeName=&#39;stroke-dasharray&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;1,200;90,200;1,200&#39;%3E%3C/animate%3E%3Canimate attributeName=&#39;stroke-dashoffset&#39; dur=&#39;1.5s&#39; keyTimes=&#39;0;0.5;1&#39; repeatCount=&#39;indefinite&#39; values=&#39;0;-35px;-125px&#39;%3E%3C/animate%3E%3C/circle%3E%3C/svg%3E&quot;);--icon-size: 48px;display: inline-block;width: var(--icon-size);height: var(--icon-size);background-color: currentcolor;-webkit-mask-image: var(--loading-icon);mask-image: var(--loading-icon)"></span></div></div><!--]--><p><strong>数学表示</strong> 设字母 A-Z 对应数字 0-25。 明文 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo>=</mo><msub><mi>p</mi><mn>0</mn></msub><msub><mi>p</mi><mn>1</mn></msub><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><msub><mi>p</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">P = p_0 p_1 ... p_{n-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">...</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight"></span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span> 关键词 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>=</mo><msub><mi>k</mi><mn>0</mn></msub><msub><mi>k</mi><mn>1</mn></msub><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><msub><mi>k</mi><mrow><mi>m</mi><mo></mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">K = k_0 k_1 ... k_{m-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9028em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">...</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mbin mtight"></span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span> (长度为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span>)</p><p>加密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><msub><mi>p</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>p</mi><mi>i</mi></msub><mo>+</mo><msub><mi>k</mi><mrow><mi>i</mi><mspace></mspace><mspace width="1em"></mspace><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333em"></mspace><mi>m</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mspace></mspace><mspace width="1em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn></mrow><annotation encoding="application/x-tex">E(p_i) = (p_i + k_{i \pmod m}) \mod 26 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mspace allowbreak mtight"></span><span class="mspace mtight" style="margin-right:0.5204em;"></span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">mod</span></span></span><span class="mspace mtight" style="margin-right:0.3903em;"></span><span class="mord mathnormal mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span></span></span></span></span></p><p>解密公式:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><msub><mi>c</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>c</mi><mi>i</mi></msub><mo></mo><msub><mi>k</mi><mrow><mi>i</mi><mspace></mspace><mspace width="1em"></mspace><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333em"></mspace><mi>m</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mspace></mspace><mspace width="1em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn></mrow><annotation encoding="application/x-tex">D(c_i) = (c_i - k_{i \pmod m}) \mod 26 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mspace allowbreak mtight"></span><span class="mspace mtight" style="margin-right:0.5204em;"></span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">mod</span></span></span><span class="mspace mtight" style="margin-right:0.3903em;"></span><span class="mord mathnormal mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span></span></span></span></span></p><p>其中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">p_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 是明文第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个字母的数字表示,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>k</mi><mrow><mi>i</mi><mspace></mspace><mspace width="0.4444em"></mspace><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333em"></mspace><mi>m</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">k_{i \pmod m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0496em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mspace allowbreak mtight"></span><span class="mspace mtight" style="margin-right:0.5204em;"></span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">mod</span></span></span><span class="mspace mtight" style="margin-right:0.3903em;"></span><span class="mord mathnormal mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span> 是关键词循环后对应第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个字母的数字表示,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">c_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 是密文第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个字母的数字表示。</p><p><strong>示例</strong> 明文:<code>ATTACKATDAWN</code> 关键词:<code>LEMON</code></p><ol><li><p><strong>关键词循环扩展</strong> 将关键词 <code>LEMON</code> 循环扩展至与明文等长:<code>LEMONLEMONLE</code></p></li><li><p><strong>明文与关键词按位组合(数字表示)</strong> 将明文和扩展后的关键词转换为数字 (A=0, B=1, ..., Z=25)。 明文数字: <code>0 19 19 0 2 10 0 19 3 0 22 13</code> 关键词数字: <code>11 4 12 14 13 11 4 12 14 13 11 4</code></p></li><li><p><strong>加密运算</strong> 对每对明文数字 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">p_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 和关键词数字 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>k</mi><mrow><mi>i</mi><mspace></mspace><mspace width="0.4444em"></mspace><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333em"></mspace><mi>m</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">k_{i \pmod m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0496em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mspace allowbreak mtight"></span><span class="mspace mtight" style="margin-right:0.5204em;"></span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">mod</span></span></span><span class="mspace mtight" style="margin-right:0.3903em;"></span><span class="mord mathnormal mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span> 执行 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>p</mi><mi>i</mi></msub><mo>+</mo><msub><mi>k</mi><mrow><mi>i</mi><mspace></mspace><mspace width="0.4444em"></mspace><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333em"></mspace><mi>m</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mspace></mspace><mspace width="0.6667em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn></mrow><annotation encoding="application/x-tex">(p_i + k_{i \pmod m}) \mod 26</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mspace allowbreak mtight"></span><span class="mspace mtight" style="margin-right:0.5204em;"></span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mtight"><span class="mord mathrm mtight">mod</span></span></span><span class="mspace mtight" style="margin-right:0.3903em;"></span><span class="mord mathnormal mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:0.6667em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span></span></span></span> 运算。 例如:</p><ul><li>第一个字母:明文 A (0) + 关键词 L (11) = <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>+</mo><mn>11</mn><mo stretchy="false">)</mo><mspace></mspace><mspace width="0.6667em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn><mo>=</mo><mn>11</mn><mo></mo><mi>L</mi></mrow><annotation encoding="application/x-tex">(0 + 11) \mod 26 = 11 \rightarrow L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">11</span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:0.6667em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">11</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span></li><li>第二个字母:明文 T (19) + 关键词 E (4) = <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>19</mn><mo>+</mo><mn>4</mn><mo stretchy="false">)</mo><mspace></mspace><mspace width="0.6667em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn><mo>=</mo><mn>23</mn><mo></mo><mi>X</mi></mrow><annotation encoding="application/x-tex">(19 + 4) \mod 26 = 23 \rightarrow X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">19</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:0.6667em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">23</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span></li><li>第三个字母:明文 T (19) + 关键词 M (12) = <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>19</mn><mo>+</mo><mn>12</mn><mo stretchy="false">)</mo><mspace></mspace><mspace width="0.6667em"></mspace><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mtext></mtext><mtext></mtext><mn>26</mn><mo>=</mo><mn>5</mn><mo></mo><mi>F</mi></mrow><annotation encoding="application/x-tex">(19 + 12) \mod 26 = 5 \rightarrow F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">19</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">12</span><span class="mclose">)</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:0.6667em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord mathrm">mod</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">26</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span> ... 最终密文:<code>LXFOPVEFRNHR</code></li></ul></li></ol><p><strong>安全性分析</strong> 维吉尼亚密码比单表替换密码更安全,因为它引入了<strong>多表替换</strong>,使得密文的字母频率分布趋于平坦,从而抵抗了简单的频率分析攻击。</p><p>然而,它并非绝对安全,主要弱点在于<strong>关键词的周期性</strong></p><ol><li><strong>Kasiski 测试</strong>:通过分析密文中重复出现的字母组,可以推断出关键词的长度。</li><li><strong>频率分析(针对子密码)</strong>:一旦关键词长度确定,密文可以被分成若干个凯撒密码,然后对每个子密码进行频率分析。</li></ol><p><strong>特点</strong></p><ul><li>多表替换,比单表替换密码更安全</li><li>引入了关键词的概念,增强了密钥的复杂性</li><li>易受Kasiski测试和频率分析的组合攻击</li><li>在历史上曾被认为是“牢不可破的密码”</li></ul><h2 id="附件" tabindex="-1"><a class="header-anchor" href="#附件"><span>附件:</span></a></h2><p>具体的使用样例代码请参考:<a href="https://gitea.simengweb.com/si-meng-spec/cryptography-example-code" target="_blank" rel="noopener noreferrer">https://gitea.simengweb.com/si-meng-spec/cryptography-example-code</a></p></div><!----><!----><!----></div></main><footer class="vp-doc-footer" data-v-23f6ad98 data-v-7138e2cb><!--[--><!--]--><!----><div class="contributors" aria-label="Contributors" data-v-7138e2cb><span class="contributors-label" data-v-7138e2cb>贡献者: </span><span class="contributors-info" data-v-7138e2cb><!--[--><!--[--><span class="contributor" data-v-7138e2cb>祀梦</span><!----><!--]--><!--]--></span></div><nav class="prev-next" data-v-7138e2cb><div class="pager" data-v-7138e2cb><a class="vp-link link pager-link prev" href="/theory/cryptography/" data-v-7138e2cb><!--[--><span class="desc" data-v-7138e2cb>上一页</span><span class="title" data-v-7138e2cb>密码学基础</span><!--]--><!----></a></div><div class="pager" data-v-7138e2cb><a class="vp-link link pager-link next" href="/theory/cryptography/permutation-encryption/" data-v-7138e2cb><!--[--><span class="desc" data-v-7138e2cb>下一页</span><span class="title" data-v-7138e2cb>置换密码</span><!--]--><!----></a></div></nav></footer><div id="comment" class="waline-wrapper vp-comment" vp-comment darkmode="false" style="display:block;" data-v-23f6ad98><!----></div><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><!--]--><button style="display:none;" type="button" class="vp-back-to-top" aria-label="back to top" data-v-f73ca3da data-v-bcf8d9a6><span class="percent" data-allow-mismatch data-v-bcf8d9a6>0%</span><span class="show icon vpi-back-to-top" data-v-bcf8d9a6></span><svg aria-hidden="true" data-v-bcf8d9a6><circle cx="50%" cy="50%" data-allow-mismatch style="stroke-dasharray:calc(0% - 12.566370614359172px) calc(314.1592653589793% - 12.566370614359172px);" data-v-bcf8d9a6></circle></svg></button><svg style="display:none;" xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewbox="0 0 24 24" aria-label="sign down" class="vp-sign-down" aria-hidden="true" data-v-f73ca3da data-v-900978de><g fill="none" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2.5" data-v-900978de><path d="m19 11l-7 6l-7-6" data-v-900978de></path><path d="m19 5l-7 6l-7-6" opacity="0.6" data-v-900978de></path></g></svg><footer class="vp-footer has-sidebar" vp-footer data-v-f73ca3da data-v-400675cf><!--[--><div class="container" data-v-400675cf><p class="message" data-v-400675cf>Powered by <a target="_blank" href="https://v2.vuepress.vuejs.org/">VuePress</a> & <a target="_blank" href="https://theme-plume.vuejs.press">vuepress-theme-plume</a></p><!----></div><!--]--></footer><!--[--><!--]--><!--]--></div><!----><!--]--><!--[--><!--]--><!--]--></div><script type="module" src="/assets/app-I9WJttm3.js" defer></script></body></html>